21 Oktober 2008

Ikatan Ionik (Elektrovalen)

Ikatan Ionik (Elektrovalen)
Tinjauan sederhana mengenai ikatan ionik

Pentingnya struktur gas mulia

Seberapa penting struktur gas mulia adalah terletak pada struktur elektronik gas mulia seperti neon atau argon yang memiliki delapan elektron pada tingkat energi terluarnya (atau dua elektron pada kasus helium). Struktur gas mulia tersebut merupakan gagasan secara keseluruhan dalam suatu cara “yang diinginkan” untuk menjelaskan atom supaya dimengerti.

Kamu mungkin akan menangkap kesan yang kuat bahwa ketika atom-atom bereaksi, atom-atom tersebut berusaha untuk mengorganisasi sesuatu hal tertentu seperti tingkat energi terluarnya supaya terisi penuh atau kosong sama sekali.Ikatan ionik pada natrium klorida

Natrium (2,8,1) memiliki satu elektron lebih banyak dibandingkan struktur gas mulia (2,8). Jika natrium tersebut memberikan kelebihan elektron tersebut maka natrium akan menjadi lebih stabil.

Klor (2,8,7) memiliki satu elektron lebih sedikit dibandingkan struktur gas mulia (2,8,8). Jika klor tersebut memperoleh satu elektron dari tempat yang lain maka klor juga akan menjadi lebih stabil.

Jawabannya sangatlah jelas. Jika atom natrium memberikan satu elektron ke atom klor, maka keduanya akan menjadi lebih stabil

Natrium telah kehilangan satu elektron, karena itu natrium tidak lagi memiliki jumlah elektron dan proton yang sebanding. Karena natrium memiliki jumlah proton satu lebih banyak dibanding jumlah elektron, maka natrium memiliki muatan 1+. Jika elektron dihilangkan dari sebuah atom, maka terbentuk ion positif.

Ion positif kadang-kadang disebut dengan kation.

Klor memperoleh sebuah elektron, karena itu klor memiliki jumlah elektron satu lebih banyak dibanding jumlah proton. Karena itu klor memiliki muatan 1-. Jika elektron diperoleh oleh sebuah atom, maka terbentuk ion negatif.

Ion negatif kadang-kadang disebut anion.

Khuluk (sifat alami) ikatan

Ion natrium dan ion klorida berikatan satu sama lain melalui dayatarik elektrostatik yang kuat antara muatan positif dengan muatan negatif.

Rumus kimia natrium klorida

Kamu membutuhkan satu atom natrium untuk menyediakan kelebihan elektron bagi satu atom klor, karena itu keduanya bergabung secara bersamaan dengan perbandingan 1:1. Karena itu rumus kimianya adalah NaCl.

Contoh yang lain mengenai ikatan ionik

magnesium oksida

Sekali lagi, terbentuk struktur gas mulia, dan magnesium oksida berikatan satu sama lain melalui dayatarik yang sangat kuat antara kedua ion. Ikatan ionik yang terbentuk lebih kuat dibandingkan dengan ikatan ionik pada natrium klorida karena pada kondisi ini kamu memiliki ion 2+ yang menarik ion 2-. Muatan lebih besar, dayatarik lebih besar.

Rumus kimia magnesium oksida adalah MgO.

kalsium klorida

Saat ini kamu membutuhkan dua atom klor untuk digunakan oleh dua elektron terluar pada kalsium. Karena itu rumus kimia kalsium klorida adalah CaCl2.

kalium oksida

Sekali lagi, terbentuk struktur gas mulia. Dibutuhkan dua atom kalium untuk mensuplai kebutuhan elektron oksigen. Rumus kimia kalium oksida adalah K2O.

Tinjauan Mengenai Ikatan Ionik

* Elektron ditransferkan dari satu atom ke atom yang lain sebagai hasil pembentukan ion positif dan ion negatif.
* Dayatarik elektrostatik antara ion positif dan ion negatif mengikat senyawa secara bersama-sama.

Jadi apa yang baru? Pada intinya - tidak. Yang perlu diubah adalah tinjauan dimana terdapat suatu yang menarik mengenai struktur gas mulia. Banyak sekali ion yang tidak memiliki struktur gas mulia dibandingkan dengan yang memiliki struktur gas mulia.

Beberapa ion yang lazim dijumpai yang tidak memiliki struktur gas mulia

Kamu dapat menjumpai beberapa ion berikut pada pelajaran tingkat dasar. Semua ion tersebut bersifat sangat stabil, tetapi tidak satupun yang memiliki struktur gas mulia.
Fe3+ [Ar]3d5
Cu2+ [Ar]3d9
Zn2+ [Ar]3d10
Ag+ [Kr]4d10
Pb2+ [Xe]4f145d106s2

Gas mulia (kecuali helium) memiliki struktur elektronik terluar ns2np6.

Selain beberapa unsur pada permulaan deret transisi (skandium membentuk Sc3+ dengan struktur argon, sebagai contohnya), semua unsur transisi dan setiap logam mengikuti deret transisi (seperti timah dan timbal pada golongan 4, sebagai contohnya) akan memiliki struktur seperti yang disebutkan diatas.

Hal itu berarti bahwa hanya unsur-unsur yang terletak pada golongan 1 dan golongan 2 pada tabel periodik (terlepas dari hal aneh seperti skandium) dan alumunium pada golongan 3 saja yang dapat membentuk ion positif dengan struktur gas mulia (boron pada golongan 3 tidak dapat membentuk ion).

Ion negatif lebih teratur! Unsur-unsur yang terletak pada golongan 5,6 dan 7 yang membentuk ion negatif sederhana semuanya memiliki struktur gas mulia.

Jika unsur-unsur tidak membentuk struktur gas mulia ketika membentuk ion, bagaimana cara menentukan seberapa banyak elektron yang ditransferkan? Jawabannya terletak pada proses energetika pembentukan senyawa.
Bagaimana cara menentukan muatan yang terdapat pada ion?

Unsur-unsur bergabung untuk membentuk senyawa yang se-stabil mungkin - senyawa yang menghasilkan energi paling besar pada saat proses pembentukannya. Lebih besar muatan ion positif yang dimiliki, menghasilkan dayatarik yang lebih besar terhadap ion negatif. Daya tarik yang lebih besar, maka lebih banyak energi yang dilepaskan ketika ion-ion bergabung.

Hal ini berarti bahwa selama unsur membentuk ion positif akan cenderung untuk memberikan elektron sebanyak mungkin.

Dibutuhkan energi untuk menghilangkan elektron dari atom. Energi ini disebut dengan energi ionisasi. Semakin banyak elektron yang kamu hilangkan, total energi ionisasi menjadi semakin besar. Pada akhirnya energi ionisasi total yang dibutuhkan menjadi sangat besar yang mana energi yang dilepaskan ketika terjadi dayatarik antara ion positif dan ion negatif tidak cukup besar untuk menutupinya.

Unsur-unsur membentuk ion yang menghasilkan senyawa yang paling stabil - yaitu senyawa yang melepaskan energi paling banyak secara keseluruhan (over-all).

Sebagai contoh, kenapa kalsium klorida CaCl2 lebih mudah terbentuk dibandingkan dengan CaCl atau CaCl3?

Jika satu mol CaCl (mengandung ion Ca+) terbentuk dari unsurnya, sesuatu hal yang memungkinkan untuk memperkirakan bahwa dihasilkan kalor sekitar 171 kJ.

Akan tetapi, pembuatan CaCl2 (mengandung ion Ca2+) melepaskan lebih banyak kalor. Kamu dapat memperoleh 795 kJ. Kelebihan jumlah kalor yang dihasilkan menjadikan senyawa lebih stabil, hal inilah yang menyebabkan kenapa kamu akan lebih mudah memperoleh CaCl2 dibandingkan CaCl.

Bagaimana dengan CaCl3 (mengandung ion Ca3+)? Untuk membuat satu mol senyawa ini, kamu dapat memperkirakan bahwa kamu membutuhkan 1342 kJ. Hal ini menjadikan senyawa menjadi sangat tidak stabil. Kenapa begitu banyak energi yang dibutuhkan untuk membuat CaCl3? Hal ini karena energi ionisasi ketiga (energi yang diperlukan untuk menghilangkan elektron yang ketiga) sangat tinggi (4940 kJ mol-1) karena elektron yang dihilangkan berasal dari tingkat-3 dibandingkan daripada elektron dari tingkat-4. Karena elektron lebih dekat ke inti dibandingkan dua elektron pertama yang dihilangkan, hal ini menghasilkan tarikan yang lebih kuat.

Argumentasi yang sama digunakan untuk ion negatif. Sebagai contoh, oksigen dapat lebih mudah membentuk ion O- dibandingkan ion O- atau ion O3-, karena senyawa yang mengandung ion O2- menjadikan senyawa tersebut paling stabil secara energetik.
Unsur kimia, atau hanya disebut unsur, adalah zat kimia yang tak dapat dibagi lagi menjadi zat yang lebih kecil, atau tak dapat diubah menjadi zat kimia lain dengan menggunakan metode kimia biasa. Partikel terkecil dari unsur adalah atom. Sebuah atom terdiri atas inti atom (nukleus) dan dikelilingi oleh elektron. Inti atom terdiri atas sejumlah proton dan neutron. Hingga saat ini diketahui terdapat kurang lebih 117 unsur di dunia.

Hal yang membedakan unsur satu dengan lainnya adalah jumlah proton dalam inti atom tersebut. Misalnya, seluruh atom karbon memiliki proton sebanyak 6 buah, sedangkan atom oksigen memiliki proton sebanyak 8 buah. Jumlah proton pada sebuah atom dikenal dengan istilah nomor atom (dilambangkan dengan Z).

Namun demikian, atom-atom pada unsur yang sama tersebut dapat memiliki jumlah neutron yang berbeda; hal ini dikenal dengan sebutan isotop. Massa atom sebuah unsur (dilambangkan dengan "A") adalah massa rata-rata atom suatu unsur pada alam. Karena massa elektron sangatlah kecil, dan massa neutron hampir sama dengan massa proton, maka massa atom biasanya dinyatakan dengan jumlah proton dan neutron pada inti atom, pada isotop yang memiliki kelimpahan terbanyak di alam. Ukuran massa atom adalah satuan massa atom (smu). Beberapa isotop bersifat radioaktif, dan mengalami penguraian (peluruhan) terhadap radiasi partikel alfa atau beta.

Unsur paling ringan adalah hidrogen dan helium. Hidrogen dipercaya sebagai unsur yang ada pertama kali di jagad raya setelah terjadinya Big Bang. Seluruh unsur-unsur berat secara alami terbentuk (baik secara alami ataupun buatan) melalui berbagai metode nukleosintesis. Hingga tahun 2005, dikenal 118 unsur yang diketahui, 93 unsur diantaranya terdapat di alam, dan 23 unsur merupakan unsur buatan. Unsur buatan pertama kali diduga adalah teknetium pada tahun 1937. Seluruh unsur buatan merupakan radioaktif dengan waktu paruh yang pendek, sehingga atom-atom tersebut yang terbentuk secara alami sepertinya telah terurai.

Daftar unsur dapat dinyatakan berdasarkan nama, simbol, atau nomor atom. Dalam tabel periodik, disajikan pula pengelompokan unsur-unsur yang memiliki sifat-sifat kimia yang sama.

Penamaan unsur telah jauh sebelum adanya teori atom suatu zat, meski pada waktu itu belum diketahui mana yang merupakan unsur, dan mana yang merupakan senyawa. Ketika teori atom berkembang, nama-nama unsur yang telah digunakan pada masa lampau tetap dipakai. Misalnya, unsur "cuprum" dalam Bahasa Inggris dikenal dengan copper, dan dalam Bahasa Indonesia dikenal dengan istilah tembaga. Contoh lain, dalam Bahasa Jerman "Wasserstoff" berarti "hidrogen", dan "Sauerstoff" berarti "oksigen".

Nama resmi dari unsur kimia ditentukan oleh organisasi IUPAC. Menurut IUPAC, nama unsur tidak diawali dengan huruf kapital, kecuali berada di awal kalimat. Dalam paruh akhir abad ke-20, banyak laboratorium mampu menciptakan unsur baru yang memiliki tingkat peluruhan cukup tinggi untuk dijual atau disimpan. Nama-nama unsur baru ini ditetapkan pula oleh IUPAC, dan umumnya mengadopsi nama yang dipilih oleh penemu unsur tersebut. Hal ini dapat menimbulkan kontroversi grup riset mana yang asli menemukan unsur tersebut, dan penundaan penamaan unsur dalam waktu yang lama (lihat kontroversi penamaan unsur).


Sebelum kimia menjadi bidang ilmu, ahli alkemi telah menentukan simbol-simbol baik untuk logam maupun senyawa umum lainnya. Mereka menggunakan singkatan dalam diagram atau prosedur; dan tanpa konsep mengenai suatu atom bergabung untuk membentuk molekul. Dengan perkembangan teori zat, John Dalton memperkenalkan simbol-simbol yang lebih sederhana, didasarkan oleh lingkaran, yang digunakan untuk menggambarkan molekul.

Sistem yang saat ini digunakan diperkenalkan oleh Berzelius. Dalam sistem tipografi tersebut, simbol kimia yang digunakan adalah singkatan dari nama Latin (karena waktu itu Bahasa Latin merupakan bahasa sains); misalnya Fe adalah simbol untuk unsur ferrum (besi), Cu adalah simbol untuk unsur Cuprum (tembaga), Hg adalah simbol untuk unsur hydrargyrum (raksa), dan sebagainya.

Simbol kimia digunakan secara internasional, meski nama-nama unsur diterjemahkan antarbahasa. Huruf pertama simbol kimia ditulis dalam huruf kapital, sedangkan huruf selanjutnya (jika ada) ditulis dalam huruf kecil.